On discreteness of commensurators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discreteness of Commensurators

We begin by showing that commensurators of Zariski dense subgroups of isometry groups of symmetric spaces of non-compact type are discrete provided that the limit set on the Furstenberg boundary is not invariant under the action of a (virtual) simple factor. In particular for rank one or simple Lie groups, Zariski dense subgroups with non-empty domain of discontinuity have discrete commensurato...

متن کامل

On abstract commensurators of groups

We prove that the abstract commensurator of a nontrivial free group, an infinite surface group, or more generally a group that splits appropriately over a cyclic subgroup is not finitely generated. This applies in particular to all torsion-free word-hyperbolic groups with infinite outer automorphism group and abelianization of rank at least 2. We also construct a finitely generated group which ...

متن کامل

Abstract Commensurators of Braid Groups

Let Bn be the braid group on n ≥ 4 strands. We show that the abstract commensurator of Bn is isomorphic to Mod(S)⋉ (Q ⋉ Q), where Mod(S) is the extended mapping class group of the sphere with n + 1 punctures.

متن کامل

Commensurators of Cusped Hyperbolic Manifolds

This paper describes a general algorithm for finding the commensurator of a non-arithmetic hyperbolic manifold with cusps, and for deciding when two such manifolds are commensurable. The method is based on some elementary observations regarding horosphere packings and canonical cell decompositions. For example, we use this to find the commensurators of all non-arithmetic hyperbolic once-punctur...

متن کامل

Abstract Commensurators of Profinite Groups

In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group G is a group Comm(G) which depends only on the commensurability class of G. We study various properties of Comm(G); in particular, we find two natural ways to turn it into a topological group. We also use Comm(G) to study topological groups which conta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2011

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2011.15.331